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On the classical limit and the problem of phase transitions 
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Received 5 October 1976, in final form 17 February 1977 

Abstract. Some aspects of the relation between proofs of both absence and existence of 
phase transitions for a class of quantum spin systems and their classical counterparts are 
discussed. The results of absence of phase transitions apply to a large class of classical 
systems with special symmetry already considered by Vuillermot and Romerio, and to their 
quantum mechanical analogues. 

1. Introduction and summary 

Recent great progress in the subject of phase transitions (Frohlich etal 1976a, b, Dyson. 
et a1 1976, 1977) also showed a complete analogy between proofs of existence of a 
phase transition in the quantum mechanical isotropic Heisenberg model with nearest- 
neighbour interactions (Dyson et a1 1976, 1977) and its classical counterpart (Frohlich 
etal 1976a, b). In fact, the strategy adopted for the quantum case by Dyson et a1 (1976, 
1977) was the same as that adopted by Frohlich et a1 (1976a, b) for the classical model, 
the essential difference being the replacement in the basic inequality of Frohlich et a1 
(1976a, b) of the classical scalar product by the Bogoliubov (1962) scalar product. 

In this paper, we discuss this correspondence in greater detail. In § 2 we study the 
classical limit of the Bogoliubov scalar product for a class of operators along the lines of 
Lieb (1973). In 0 3  we discuss the relation between the classical (Mermin 1967, 
Vuillermot and Romerio 1975, Romerio and Vuillermot 1974) and quantum mechani- 
cal (Mermin and Wagner 1966) proofs of the absence of phase transitions for a large 
class of classical systems with special symmetry, already considered in Vuillermot and 
Romerio (1975), and to their quantum mechanical counterparts. Section 4 contains 
some brief remarks on the relation between existing proofs (Frohlich et a1 1976a, b, 
Dyson et a1 1976, 1977) of phase transitions for the classical and quantum Heisenberg 
models. 

2. On the classical limit of the Bogoliubov scalar product 

An important role in the understanding of the relation between classical and quantum 
proofs of the absence or existence of phase transitions is played by the classical limit of 
the Bogoliubov scalar product, which we now discuss along the lines of Lieb (1973). 

t Supported by the Swiss National Science Foundation. 
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Let H A  be the Hamiltonian of a quantum spin system of spin S for a finite region 
A c Z3 on X,, = C?’+’, /AI being the number of sites in A. H A  may be an arbitrary 
polynomial on the spin operators Si, i = 1, . . . ,1111, but it is required (Lieb 1973) to be 
linear in the operators Si of each spin. For A, B any two operators on %’,, and any 
0 < /3 Coo, we define the Bogoliubov scalar product of A and B as being the quantity 

8 

(A, B)? = I dA (eAHAA * e-AH ̂B)! 
0 

where, for any matrix A on XA,  

(A)! = TrzA(e-pHAA)/TrzA e-pHA. (2.2) 

By the ‘classical operator corresponding to a particular operator A on ZA, linear in each 
of the spins Si’, we mean the operator A, on W,,Z@!’!~ L2(Y,, dpi), .% being a copy of 
the unit sphere in R3 and pi a copy of the usual measure on Y, (Lieb 1973), obtained 
from A by replacing each spin operator Si in A by a classical unit vector ti in Y,.. By As 
we denote the operator obtained from A by replacing each spin operator Si in A by 
Si /S .  We need the following lemma, which is a simple consequence of Lieb’s (1973) 
inequalities. 

Lemma 2.1. Let A be any operator on X,, linear in the operators Si of each spin, and let 
( * )?” denote the thermal expectation value as in (2.2), but replacing HA by HA,s. 
Then for each fixed A c Z3: 

where ( A & P  denotes the thermal expectation value of the classical operator A, 
corresponding to A in the ensemble defined by the classical Hamiltonian HA,, corres- 
ponding to HA. 

Proof. We have Lieb’s (1973) inequalities 

A-](~;(o; i)-f;(-~, G ~ ) ) ~ ( A , ) ? ~ ~ A - ’ ( ~ ; ( A  ; s,)-f;(o; 1)) VA E& ( 2 . 4 ~ )  

where Ss = (S + 1)/S and 

f i ( A  ; 6) -/3-’ In 0 dpi(dli) exp[-/3(Hi,,+hA,d)] (2.4b) 

and where d l i  <T, 0s pi <2n, dPi(Q) =sin 6, dei dpi, i = 1, . . . , /AI, 
and H i ,  (and similarly A:) is obtained from HA,, by multiplying each classical spin unit 
vector in HA,, by 6. From (2 .44  taking the limit S + CCI we obtain 

A-’(G(o; 1) --f i(-~ ; 1)) 3 S-m lim ( A ~ ) ? ’ ~ A  - ‘ ( f i (~ ; 1) -fi(00; 1)) 

Now, for A fixed f;(A; 1) is differentiable in A for A E R and its derivative at A = 0 is 
(A&8,,c. Hence (2.5) implies (2.3). 

Proposition 2.1. 

I ,‘Ti 
pi) ,  0s 

VA E R+. 

(2.5) 

lim (As, BS)!?’ = fl(A,, B,)Y 
S-m 
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where (A, B)?” is obtained from (2.1) by the replacement of H A  by HA,s, and 

where A2 is the Cartesian product of the Q,-i = 1, . . . , /AI, A, and B, denote functions of 
Cl and the bar denotes complex conjugate. 

Remark. To relate this to the more general setting of 8 3, we note that the group above is 
always the Cartesian product indexed by the points in A of copies of G = SO(3). If 
K=S0(2)  is the isotropy subgroup of a point in the unit sphere, each measure p in 
(2.4b) is a copy of the normalized measure induced by the Haar measure on the 
homogeneous space G / K .  The scalar product in (2.7) is effectively a special case of the 
one considered in 0 3. 

Proof. By (2.1) 

(As, B s ) f S  = J dh (eAHA.”[A:, e-AHA.s]Bs)y+p(A:, B s ) t S .  (2.8) 
0 

Although (A:, Bs) may involve quadratic terms in the spin at a certain site of type (S?), 
it may easily be proved that lemma 2.1 is applicable and yields 

lim (A:, B s ) f S =  (A,*, B,)? 
s-w 

Further 

(2.9) 

(2.10) 

and [A:,  HA,^] consists of a finite (A-dependent) number of (otherwise uniformly 
bounded in S )  terms, containing commutators of type 

which tend to zero in norm as S -+ W. Since A:, Bs, 
in norm, and 

are uniformly (in S) bounded 

for an arbitrary operator 0 on %’, (2.6) follows from (2.8), (2.9) and (2.10). 

Remark 2.1. We now establish the link between this section and 00 3 and 4, especially 
0 3. 
In 8 3, the correspondence between the quantum and classical proofs of absence of 
phase transition with non-zero order parameter in one- and two-dimensional classical 
spin systems is shown in detail and-in part for the purpose of clarity-in a more general 
setting. The explicit connexion with the above result is as follows. We observe that the 
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basic inequalities used in the classical proof may be obtained from the quantum 
inequalities by the limiting process indicated in the proposition. In fact, two inequalities 
are used there: 

[(A, B)?1* (A, A)?@, B)? (2.11) 

(A, A)!+;~(AA*+A*A)~. (2.12) 

and 

The point is that (2.12) reduces to an identity in the classical limit, while (2.11) reduces 
to the Schwartz inequality for classical functions on 2;. But the Schwartz inequality for 
suitable operators (plus symmetry) is the only ingredient of the classical proof given in 
§ 3. 

The symmetry considerations are quite analogous for the classical and quantum 
cases. This point is shown in detail in 0 3. Finally, in § 4 we remark that proposition 2.1 
may be used to show that, similarly, the classical proof (Frohlich et a1 1976a, b) of 
existence of a phase transition follows directly from the quantum existence proof 
(Dyson et al 1976, 1977), in the case of the Heisenberg model with nearest-neighbour 
interactions. 

3. Absence of phase transition for a class of two-dimensional systems 

It has been shown that the Heisenberg model, in both classical and quantum forms, 
cannot exhibit a spontaneous magnetization at any finite temperature (Mermin 1967, 
Mermin and Wagner 1966). The proofs given rely mainly on two different tools, the 
intrinsic symmetry of the system and the Schwartz inequality for a well chosen 
non-degenerate sesquilinear form. 

In Romerio and Vuillermot (1974) or Vuillermot and Romerio (1975) it has been 
shown that a generalized form of the classical Bogoliubov inequality can be derived for 
all systems whose configuration manifold is a compact connected real Lie group G and 
can be used to rule out the existence of a non-zero ‘order parameter’ at any finite 
temperature in a class of one- and two-dimensional systems defined by G-invariant 
Hamiltonians. 

Our purpose, in this section, is to show that in the quantum case similar arguments 
can be developed and lead to an inequality which is the exact counterpart of the one 
used in Vuillermot and Romerio (1975) and Romerio and Vuillermot (1974). 

In order to underline the analogy between the two cases, we briefly summarize the 
main steps of the proof for the classical case. Let, as previously, Z” be a v-dimensional 
lattice and A be a subset of B”. We associate with each site R E A a copy GR of a 
connected compact real Lie group G, of dimension n. 

Let 

G(A)= 0 GR 
R E A  

(3.1) 

be the configuration manifold and H A  E C“(G(A), R) be the Hamiltonian of the system. 
Let 
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with p = (kT)-', be the partition function, and, for each cp E C"(G(A), C) 

(3.3) 

be the 'thermal average'. 

of the continuous mapping from G(A) into an n-dimensional space M: 
We then introduce the following positive sesquilinear form on the vector space F(A) 

(3.4) 

(f(g), h (g))M = 2 fa ( g ) k  (g). 
a = l  

The Cauchy-Schwartz inequality yields 

IBM h)l*~.(f,f)B(h, h )  f, h E W ) .  (3.5) 
To establish the Bogoliubov inequality, the special symmetry of the configuration 
manifold (3.1) is required; it is expressed in the following lemma. 

Lemma 3.1. Let (D,)ls,sn be a family of differential operators on G(A), and (&)ls,sn 

a family of functions in C"(G(A), C). Then, for every family (Xa)Is,sn of left-invariant 
complex vector fields on G(A) we have 

(3.6) 

This lemma follows from (3.5) by choosing f =  
(Vuillermot and Romerio 1975, Romerio and Vuillermot 1974). 

and h =(ha):= ,  appropriately 

It is important to note that (3.6) does not hold for an arbitrary vector field. 
The next step is to choose X,, 0, and 4, for all a in such a way that the right-hand 

side of (3.6) be proportional to the 'order parameter'. 
Let dR be the Lie algebra of GR. Because GR is compact, there exists a strictly 

positive bilinear form B on dR X dR, invariant under Ad(GR), the adjoint representa- 
tion of GR; if (X,)ls,sn is a basis of dR and (Yf)lsasn is the dual basis with respect to 
B, the element 

called the Casimir element, belongs to the centre of U ( d R ) ,  the universal enveloping 
algebra of dR. This result implies in particular that all spherical functions of GR, defined 
with respect to a closed subgroup are eigensolutions of y R .  

Making use of this standard result, we define 

0, = exp(-ikR) Y t  = Y, ( k )  
R E A  

where k belongs to the first Brillouin zone of the lattice Z". 

(3.8) 
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It may be noted that the definitions of (3.8) implicitly imply that E” is embedded in 
an Euclidean space E’ which allows, through the scalar product, the definition of the 
Brillouin zone. 

Up to here, nothing has been assumed for HA. We choose it in the form 

HA(g) =@(g)+AHA(g) (3.9) 

where g E G(A). We require that 

and 
(3.11) 

where QR is a spherical function on GR with respect to a compact subgroup K of G(A), 
i.e. it is an element of C“(G(A), C), which is an eigenfunction of the Casimir element 
defined in (3.7). Using this fact and (3.8), it is then an easy matter to show that taking 
+Q = HA, for all CY, we get 

(X, (DQHi)) = constant x (Ha 
Q 

and that, by adding terms in k and -k, 

(Xu (%HA)) 
U 

a - 2  1 {l-cos[k.(R-R’)])C(XEXE’(H:)) 
R,R’ Q 

- 2A 1 1 ((XpRXpR)Hi), 
R Q  

(3.12) 

(3.13) 

In this last inequality, we made use of the fact that in an infinitesimal form (3.10) reads 

x:H: = 0 for all CY 
R 

By some trivial majoration and integration on the Brillouin zone (Vuillermot and 
Romerio 1975, Romerio and Vuillermot 1974), one finally gets 

(3.14) 

where p, A and B are positive constants (A is finite for a reasonable choice of H, for 
example (3.2) in Vuillermot and Romerio 1975). 

To prove the absence of ordering in the corresponding quantum case, we first notice 
that having to define the quantum analogue of some generalized classical lattice spin 
systems, we can assume that to HA correspond an operator fi,, on a Hilbert space 
X = OR E h  MR, where the MR are copies of the same Hilbert space M, satisfying some 
condition similar to (3.10). 

On the other hand, we remark that the spherical functions with which we formed HA 
can be considered as ‘canonically associated’ to some irreducible representation of G 
(Helgason 1962). In the same way, we ask that to H i  correspond an operator Hi 
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formed from a single component of an irreducible tensor set. The elements of X are the 
states of the system so that we can replace (3.2) and (3.3) by 

Z(A) = Tr e-'fiA 

(A,) = Z(A)-' Tr(A, 

(3.2') 

(3.3') 

where A, is the linear operator corresponding to tbe observable cp. 

on 8; Xa where Xa = X. 

form by 

To get the inequality corresponding to (3.4), let F(A) be the space of linear operators 

With the help of the scalar product (2.1), we define on $(A) a positive sesquilinear 

(3.4') 

where d, and & are linear operators on Xa. 
In analogywith 0 2, we are inclined to think that (3.4) can be obtained from (3.4') by 

a limiting procedure corresponding to the passage from the quantum to the classical 
case. Using the Cauchy-Schwartz inequality for the above form and operators A = 
(Aa):- and B = (B,): 

I ~ ( [ ~ ~ , A I ) I  Q ~ P  C ( A ~ ~ , * + A ~ A ~ > C ( [ C : , [ ~ * , ~ ~ I I >  (3.15) 

. L A  

and following Ruelle (1969), we get 
2 

Y 

where ea is defined in terms of &, a = 1 , .  . . , n, by 

& =[&, &I. 
It is evident that the expressions (3.4') and (3.15) are not valid for all operators on X. 
We restrict ourselves here to bounded linear operators on 2. 

Let U be a linear representation of GR in MR and (fy)14isn an irreducible tensor 
set for GR. We then have 

(3.16) 

where Ds is an m-dimensional irreducible representation of GR, characterized by the 
discrete index s. 

Writing 

and 

D"kR = exp( $ ~ 9 s )  

where (*a)l4aGn are the infinitesimal operators of U representing the elements 
(X t ) i saSn  of the basis of dR previously introduced, and the represent the 
same elements in the representation of dR generated by D'. We then have 

(3.17) 
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If instead of the basis (Xt)1ea4n wf take the basis ( Yt) l sasn ,  the elements correspond- 
ing to 2: and U:.” will be called YE and bEVs respectively. 

Making use of (3.17), we then have 

a a = l  j , k = l  

But, as is well known in representation theory (Bourbaki 1960), the element 

(3.7‘) 

is the Casimir element of the representation D* and is proportional to the identity in the 
representation space. Let us now introduce the operator 

A:,. = 0 0.. . 0 0  0 [kt, ?z.s] 0 U 0.. . 0 U 
where ?!.’ is a particular element of the tensor set; f z s s  is supposed to be Hermitian. 
We then define 

A:= exp(ik. R)A.,“.’ 
R E A  

(3.8’) 

and 

= exp(-ik . R)?:,’ 
R E A  

where ?f is identified with 0 0 . .  .0 ?.,“0.. .@U. 

elements. 

(3.10) becomes 

As before k belongs to the first Brillouin zone of Z’ and k . R is the scalar of the two 

For the Hamiltonian, we impose a form similar to (3.9). In an infinitesimal form 

[ 2:,fi:] =o. 
R E A  

We also put 

(3.10‘) 

(3.11’) 

where e*’ is identified with U 0. . . 0 
depends on R only by its position on the lattice. 

write 

0. . . 0 U, that is to an element which 

We can now make the analogy between (3.15) and (3.6) completely transparent. We 

&Aa =[ea, A,] 

$a = H,: 
and define 

for all a. Then A: defined by (3.8’) may be written 
= irj$& 
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and 3: are clearly the precise analogues of the derivations (3.8). In this notation, 
(3.15) becomes 

To exploit the analogy further, we use (3.7‘), (3.8’) and (3.17) to get 

and finally 

(3.12’) 

where j ~ ‘  is a constant. 
Adding terms in k and -k and making use of (3.10’), we also have 

c - 2  1 ( l - c o s [ k . ( R - R ’ ) ] } C ( ( [ ? t , [ f i ,  Yt’*]])) 
R,R‘  U 

but 
([?:,[AA, ?:*]])=C (6:9s)ji(F)oj(Ti’ “ R  s* ) 

i j  

as 

[E ,  Y: *] = [ Y:, E]* = (moj(fy)*. 
i 

Noticing that 1 -cos x s i x ’  and summing both sides of the inequality (3.15) on the first 
Brillouin zone, we get, after standard majoration and after taking the thermodynamic 
limit, A + 00, a formula similar to (3.14), in which A is finite for a class of H: defined by 
the condition 

lim 1 I([&:, [A:, P~‘*]I)~(R --R’)’<m. 
A+m R,R‘EA 

The result is thus essentially the same as for the classical case. 
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4. Remarks on the relation between classical and quantum existence proofs 

In Dyson et a1 (1976, 1977) a proof of the existence of a phase transition for the 
quantum mechanical isotropic Heisenberg model with nearest-neighbour interactions, 
spin S arbitrary, and in any number Y 3 3 dimensions, was sketched, The Hamiltonian 
for the region A c Z’ was given by 

on $ifA =a!’!, C?’+’, S!),j  = 1,2,3,  being the spin operators for the ith lattice site, and 
IAl is the number of sites in A. The proof was based upon the inequality 

(4.2) 

Proposition 2.1. As a consequence of (4.2), the classical Heisenberg model correspond- 
ing to (4.1) undergoes a phase transition. 

Roof. From (4.2), if B = B’/S2 

Now taking the limit (S +CO) for fixed A, and using (2.6), we find 

(4.5) 

where tp are the Fourier transforms of the classical unit vectors defined as in (4.3). (4.5) 
is the relation established in Frohlich et a1 (1976a, b), which, together with Parseval’s 
equality, proves the existence of a phase transition (see Frahlich et a1 1976a, b). 

The authors are indebted to a referee for corrections and fruitful remarks. 
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